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A solution is obtained for the distribution of a trace component in a Oldroyd liq- 
uid for various forms of the pressure function: pulsed, stepwise, and periodic. 

The model of [i, 2] for the dispersion of a material in a flow of viscous liquid is ap- 
plicable also to laminar and turbulent flows provided thatthe diffusion processes are fairly 
prolonged. The use of this model is restricted to the range WmR/D ~ 6.9 for the time factor, 
but this is not always obeyed for real processes (particularly ones of nonstationary type). 
In [3, 4], this restriction does not apply; they deal with nonstationary diffusion for any 
instant. For a rheologically complex medium [5] for which the relaxation time is X = I0 -e- 
l0 ~ the duration of the diffusion processes are comparable with the transient-response 
times. Under those conditions, the diffusion processes will be dependent not only on the 
rheological ones [6] but also on the relaxation characteristics. 

We consider the distribution of an impurity in a flow of Oldroyd liquid [7] with relaxa- 
tion behavior: 
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The one-dimensional equation of motion in a circular tube then takes the form 
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The function f(t) = (--i/p)(3p/3x) is dependent on time. We assume that f(t) is one of the 
commoner functions: f1(t) = AS(t) is a Dirac delta function (k = i), fa(t) = AH(t) a Heavi- 
side step function (k = 2), and fa(t) = A cos m t a harmonic function (k = 3). Then the ve- 
locity distribution at any instant is defined as 

(r, t )=  i a)(t)Jo(r, E) (k = 1, 2, 3). 
i = 1  

(3) 
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and ~i are the roots of the equation for the Bessel function Jo(R~ i) = 0. The mean instanta- 

neous flow speed is 

R 

W m ( t ) = - ~  w(r, t) rdr-- R ~ 
0 i = 1  

(4) 

If a trace of material is injected into the flow at the initial instant, one can determine 
the concentration c(t, x, r) at any instant by using the usual equation of convective dif- 
fusion [8]: 
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The following is the balance equation for matter in a coordinate system moving at the mean 
flow speed Wm(t): 
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We can take Taylor's assumption as correct for the instantaneous values of the time and 
write (5) as 

[~(r, t)--Wm(t)] Ox r Or Or ] " (8) 

The left side of (8) is dependent on the variable r, and it is therefore simple to integrate 
it in order to determine the concentration profile in terms of the mean concentration over 
the flow section ~Cm/~t ; we get 

~C m c(< x, r)=~o(t, x) + 

From (9) we t r a n s f o r m  (3) t o  

i dr' ii [w(r, t)-- Wm(t)]rdr. 
Dor' , 
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where the effective diffusion coefficient D is determined as 
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Use of the velocity patterns of (3) and (4) for flows in relaxing systems in (ii) for various 
pressure functions enables one to find D; here one has to incorporate the condition for or- 
thogonality of the eigenfunctions Jo(~i, r) and use the major properties of Bessel functions 
[9]: 
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It is characteristic that the effective diffusion coefficient is dependent not only on time 
but also on the relaxation characteristics: the relaxation time and the retardation time: 
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Fig. i. Variation in the rel- 
ative effective diffusion co- 
efficient with time for various 
pressure functions: pulse (I) ; 
stepped (l~ # la # O) (2), and 
(I~ = l= = 0) (3), sinusoidal 
(~ = 1 see -~, 1~ # t a  # O) (4), 
(~ = i sec -I, l~ = la = 0) (5), 
(to = 0.01 see -I, X~ # la = 0) 
(6), (~ = 0.01 see -~, I, = Xa = 
o) (7 ) .  
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In the limit where the relaxation behavior of the liquid is so Slight by comparison with the 
duration of the transient state, we have 11§ 12§ 1~(m-~)+l, ~§ 2, B+ --~, ~i = 
~i R, and the coefficients ak(t) in (13) take the form 

al = 2A exp [-- v~iR-2tlpd, 

ai 2A [ exp(--v~d/R2)I ~ ~  R ~ , 

a 2A a, ---- [{(-- ,~p~/R 2) exp ( - -  vp 2/R 2) t -6 (vp~/R z) cos cot -6 
Ix, 

-6 o~ sin cot}/{(vp 2 /R2) ~ -6 ~oz}]. 

These expressions with (i0) show that the effective diffusion coefficient very rapidly ac- 
quires a steady-state value for 11 = Xa and is dependent not only on time. 

If the pressure in the system changes stepwise in accordance with the Heaviside func- 
tion, then for t§ we get from (13) an expression for the effective diffusion coefficient 
[1]. 

We made quantitative estimates of the effects of the relaxation characteristics on the 
diffusion processes by calculating for the flow with parameters v = 4.8 cma/sec, X, = 2.4 
sec; la = 0.6; Do = 10 -5 cm2/sec; R = 0.2 cm; I = i0 a cm; the amplitude value of the pressure 
difference for the three functions was A = APo = i05 Pa. 

Figure 1 shows the numerical results as the relative value of the effective diffusion co- 
efficient D/Do in terms of the dimensionless time z = Dot/Ra; there is a maxim~l increase in 
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the mixing rate at the start for the pulse function, with a subsequent fall to zero (curve i). 
If a Heaviside function applies, a steady-state value of the mixing rate is established in a 
relaxing system for a certain time interval (curve 2). For a liquid not having relaxation 
characteristics, the steady-state values are attained almost instantly (curve 3). A similar 
situation is observed for a sinusoidal pressure function at frequencies m < 0.01 sec -I (curves 
6 and 7). At frequencies m ~ 1 sec -I, the rheological characteristics have less effect on 
the establishment of the steady-state value (curves 4 and 5). 

Therefore, the diffusion processes in a flow of relaxing liquid are dependent on the 
hydrodynamic characteristics and the relaxation ones. One can vary these characteristics 
to adjust the diffusion in a relaxing medium. 

NOTATION 

Wm, mean flow velocity; w(r, t), instantaneous flow velocity; R, tube radius; x, coor- 
dinate along axis; Do, molecular diffusion coefficient; D, effective diffusion coefficient; 
t, time; X~, ~2, relaxation and retardation times; ~, density; v, kinematic viscosity; r, 
shear stress; ~, shear rate; c, concentration; co, axial concentration; Cm, mean concentra- 
tion; Q, flow rate; DP/~x, pressure gradient; Jo, zero-order Bessel function; J~, Bessel func- 
tion of first order, real argument; Ei, roots of Bessel function; A, oscillation amplitude; 
~, frequency; ~, Dirac delta function; H, Heaviside function. 
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